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Abstract  In this paper we introduce a high-resolution CFAR detector for the linear 
data model. The detector is derived using the generalized likelihood-ratio test 
(GLRT) framework. The resulting detector has a number of distinctive properties.  
One property of the detector is that it is most useful when the training and testing 
data contain the signal-of-interest. In fact, this detector does not need training 
data although it can utilize it if provided. This is in contrast to most methods, 
which in order to prevent signal suppression, require a set of signal-free training 
data to estimate the noise/interference background. Another important property 
of the detector is that the probability of detection is invariant to the correlation 
of the signal-of-interest with other signals. This can be particularly important in 
array processing, where the signal-of-interest is often correlated with one or more 
multipath components. If the objective of the detector is to discriminate between 
sources that are very close in terms of the spans of their signal subspaces, 
then the detector derived herein has very good resolution properties. In array 
processing, this translates to very good spatial resolution.
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ABSTRACT

In this paper we introduce a high-resolution detector for
the linear data-model. The detector is derived using
the generalized-likelihood-ratio-test (GLRT) framework.
The resulting detector has a number of distinctive prop-
erties. In particular, the detector is most-useful when the
training and testing data contain the signal-of-interest.
In fact, this detector does not need training data although
it can utilize it if provided. This is in contrast to most
methods, which in order to prevent signal suppression,
require a set of signal-free training data to estimate the
noise/interference background. Another important prop-
erty of the detector is that the probability of detection
is "nearly" invariant to the correlation of the signal-of-
interest with other signals. This can be particularly im-
portant in array-processing where the signal-of-interest
is often correlated with one or more multi-path compo-
nents. If the objective of the detector is to discriminate
between sources that are very close in terms of the spans
of their signal subspaces, then the detector derived herein
has very good resolution properties. In array processing
this translates to very good spatial resolution.

1. INTRODUCTION

The generalized-likelihood-ratio test (GLRT) has been a
useful tool for devising detectors in situations for which
the distribution of the data contains unknown parame-
ters. In this paper we derive a GLRT detector for the
linear-model that extends and unifies previous work. We
also enumerate the invariances of the detector and detail
its properties. In particular when this detector is used to
spatially-localize energy in array-processing scenarios,
the results are nearly invariant to correlated multi-path.

This work supported by John Tague of ONR under contract
N00014-00-C-0145.

Another useful characteristic of this detector is that it is
applicable in cases where the training data contain the
signal-of-interest. There are many situations for which
this is a desirable property, especially if the interference
is non-stationary over the span of the observations so that
the training data do not exactly model the interference en-
vironment of the test data. This property is also useful
when one can not guarantee signal-free training data. In
the remainder of this paper we describe the underlying
hypothesis test and derive the detector. This section is
followed by a discussion of the properties of the detec-
tor. We conclude with some illustrative examples. The
details of the rank-selection algorithm and derivations
of the distributions of the detector will be deferred to a
subsequent, more detailed, paper on these detectors.

2. HYPOTHESES AND DETECTOR

Let yi ∈ C
N denote one of M vector-valued observa-

tions. We model these data by assuming that the signal-
of-interest is embedded in additive noise and additive
interference. Array snapshots and communication sig-
nals are often modeled this way and there are many other
practical detection problems for which this model is ap-
propriate. The hypotheses we consider in this paper are

H1 : yi ∼ C N (Hθi + Sφi , σ
2I) signal present

H0 : yi ∼ C N (Sφi , σ
2I) signal absent. (1)

The matrix H ∈ C
N×p describes the signal subspace 〈H〉

and the matrix S ∈ C
N×q describes the interference sub-

space 〈S〉. We implicitly assume that these subspaces
have been whitened by any known noise coloring. That
is, if the noise covariance matrix was originally σ 2R,
with tr{R} = N , then we modify the model components
as such: yi ←− R−1/2yi , H ←− R−1/2H, S ←−



R−1/2S. Frequently, a distribution for φi is assumed. In
this instance the interference component is usually mod-
eled as a term that colors the covariance matrix. We
emphasize that this is not the assumption we make here.
The "noise coloring" we describe above is not from inter-
fering sources. Instead we model the amplitude vectors
θi ∈ C

p and φi ∈ C
q as unknown but deterministic.

We argue that in cases where M is "small", there are not
enough data vectors to statistically-model the mode am-
plitudes with any degree of confidence. For example the
interference amplitude vector φi has dimension q. Using
a widely-quoted rule-of-thumb, this implies that we need
approximately M = 3q snapshots to "satisfactorily" es-
timate the covariance matrix of φ — provided that this
vector was truly Gaussian in the first place! By small
M we mean M < 3q, although the results are certainly
applicable for larger M .

We assume that the signal and interference amplitude
vectors θi ∈ C

p and φi ∈ C
q are unknown for each

data vector. We also assume that the noise power σ 2

is unknown. Finally, we assume that the interference
subspace 〈S〉 is also unknown. It is this final assumption
that distinguishes this detector from those of Scharf and
Friedlander [1]. To reiterate the only known quantity
in this test is the subspace of the signal-of-interest 〈H〉.
Finally we assume that the data vectors are pair-wise
independent. The derivation of the detector is similar to
that presented [1]. Let Y = [y1 y2 · · · yM ] denote the
N × M data matrix. Consider first the null hypothesis.
The maximum-likelihood estimates of the interference
amplitudes are

φ̂i = (S∗S)−1S∗yi ; (under H0).

The joint likelihood-function for the data can be com-
pressed with these estimates to yield

f0(Y; {φ̂i }
M
1 , σ 2, S)

=
1

(πσ 2)M N
exp

[

−
1

σ 2

M
∑

i=1

y∗i (I− PS)yi

]

=
1

(πσ 2)M N
exp

[

−
1

σ 2
tr{(I− PS)

M
∑

i=1

yi y∗i (I− PS)}

]

=
1

(πσ 2)M N
exp

[

−
M

σ 2
tr{(I− PS)R̂(I− PS)}

]

. (2)

Here PS = S(S∗S)−1S∗ is an orthogonal projection ma-
trix and

R̂ =
1

M

M
∑

i=1

yi y∗i

is the sample covariance matrix. In (2) we have used the
notation of [1] and listed the unknown and compressed

parameters in the argument of the likelihood-function.
The maximum-likelihood estimate of the noise power is

σ̂ 2 =
1

N
tr{(I− PS)R̂(I− PS)},

which results in a compressed likelihood-function

f0(Y; {φ̂i }
M
1 , σ̂ 2, S) =

(

M N

eπ

)M N

× · · ·

(

1

tr{(I− PS)R̂(I− PS)}

)M N

.

Finally, it remains to estimate the interference subspace.
It is not difficult to show that the maximum likelihood es-
timate of S is the rank-q dominant subspace of R̂. Herein
we denote the ordered eigenvalues of a matrix A by
λ1{A} ≥ λ2{A} ≥ · · · ≥ λN {A}. In our case we are in-
terested in the eigenvalues of R̂. Define L = min(M, N ).
When M < N some of these eigenvalues will be zero
and the spectrum can be more efficiently computed from
the singular-value decomposition of the data matrix Y.
In any case, compressing the likelihood-ratio with the the
estimate for S yields

f0(Y; {φ̂i }
M
1 , σ̂ 2, Ŝ) =

(

M N

eπ

)M N

× · · ·

(

1
∑L

i=q+1 λi {R̂}

)M N

(3)

Now assume hypothesis H1 is in force. The proce-
dures for estimating the mode amplitudes and the noise
power in this case are identical to those used above. Con-
sequently, we present the partially-compressed likelihood-
function

f1(Y; {φ̂i }
M
1 , {θ̂i }

M
1 , σ̂ 2, S) =

(

M N

eπ

)M N

× · · ·

(

1
∑M

i=1 y∗i (I− PHS)yi

)M N

(4)

without derivation. Our next step is to factor the projec-
tion matrix PHS as

PHS = PH + (I− PH)S(S∗(I− PH)S)−1S∗(I− PH).

Recall that H ∈ C
N×p is known. This is essentially

the factorization in [1] except that here we separate the
projection using the signal subspace as the "reference"
instead of the interference subspace. Now factor the pro-
jection matrix

I− PH = AA∗; A ∈ C
N×N−p, A∗A = I



and define

zi = A∗yi ; S̃ = A∗S ∈ C
(N−p)×q .

We also define the new sample covariance matrix

R̂zz =
1

M

M
∑

i=1

zi z∗i .

These definitions can be incorporated into (4) to yield

f1(Y; {φ̂i }
M
1 , {θ̂i }

M
1 , σ̂ 2, S̃) =

(

M N

eπ

)M N

× · · ·

(

1

tr{R̂zz − PS̃R̂zzPS̃}

)M N

. (5)

The maximum-likelihood estimate of S̃ is the rank-q
dominant subspace of R̂zz . Compressing the likelihood-
function with this estimate gives

f1(Y; {φ̂i }
M
1 , {θ̂i }

M
1 , σ̂ 2,

ˆ̃S) =

(

M N

eπ

)M N

× · · ·

(

1
∑L

i=q+1 λi {R̂zz}

)M N

. (6)

Since, in the algorithm that follows, we never explicitly
compute R̂zz , we will write (6) in the equivalent, and
more intuitive, form

f1(Y; {φ̂i }
M
1 , {θ̂i }

M
1 , σ̂ 2,

ˆ̃S) =

(

M N

eπ

)M N

× · · ·

(

1
∑L

i=q+1 λi {(I− PH)R̂(I− PH)}

)M N

. (7)

It is understood that only L− p = min(M, N )− p eigen-
values will be non-zero. The generalized likelihood-ratio
is formed by dividing the likelihood function under H1
in (7) by the likelihood-function under H0 in (3). It is
easy to show that this detector is a monotonic function
of

s =

∑L
q+1 λi {R̂}

∑L
q+1 λi {(I− PH)R̂(I− PH)}

, (8)

which implies that the detector in (8) is equivalent to
the GLRT detector. In the simulations that follow this
detector is designated by the acronym CAPE. The reason
for this nomenclature is that the equivalent detector

c = M N log(s) (9)

can be interpreted as a capacity estimator.
It should be noted that while the CAPE statistic is

based on energy in the sub-dominant (“noise") subspace,

this algorithm is not MUSIC [2]. Recall that MUSIC per-
forms one spectral decomposition for all look-directions,
whereas it is necessary to take a new spectral decompo-
sition for each look direction in CAPE. We will argue
in the next section that it is this step that allows CAPE
to have high-resolution and resistance to both multi-path
and mismatch. In Section 4 we describe how this extra
computational burden can be reduced.

We also would like to emphasize that this detector is
not equivalent to the SSMUSIC direction-of-arrival es-
timator described by McCloud and Scharf [3]. Again,
the easiest way to distinguish these two statistics is that
SSMUSIC requires only one spectral decomposition re-
gardless of the number of look-directions.

3. DETECTOR PROPERTIES

In essence, the CAPE detector is based on observing the
change in the data when the signal-of-interest is removed
from the data. This is in contrast to matched detectors,
which "measure" the change in the data when the signal-
of-interest is present. This fundamental difference has
some important practical consequences. The matched
detectors require signal-free training data to determine
the quiescent or background state. It is only when this
background is characterized can these detectors measure
the change that occurs if the signal-of-interest is present.
In contrast the H1 hypothesis underlying the CAPE de-
tector assumes that the signal-of-interest is present in all
the data. Consequently, signal-free training data are not
required for the CAPE detector.

The first important property of the detector in (9) is
that it is invariant to a complex-scaling of the data ma-
trix Y = [y1 · · · yM ]. Therefore the distribution of
the statistic under the null hypothesis is independent of
the noise power. Detectors that possess this property are
commonly called constant-false-alarm-rate (CFAR) de-
tectors. However to be truly CFAR, a detector must be
invariant to all parameters that are unknown under the
null hypothesis. In this case, a CFAR detector would
be required to be invariant to the unknown interference
subspace 〈S〉 and the amplitudes of the interference com-
ponents {φi }. Unfortunately, the CAPE detector does not
possess these invariances and the author believes that it is
most-likely impossible to design any meaningful detec-
tor that does. However, as we show in the simulations,
the CAPE detector is remarkably resistant to the effects
of the interference. As a quick explanation, strong inter-
ference effects are generally manifested in the dominant
subspace of the sample covariance matrix. However, the
CAPE statistic examines energy only in the sub-dominant
subspace. Of course with M finite, any interference com-
ponent will affect all the eigenvalues of the sample co-



variance matrix, so we can never be truly invariant to its
effects. Finally we note that if the detector is operated
in "search mode" where the detector output is compared
for a number of different signal subspaces 〈H〉, the lack
of a truly CFAR property is less important since the pres-
ence or absence of a signal is inferred not solely by the
amplitude of the statistic but by its value relative to the
other "search" directions.

Another important property of the detector is that it
is robust to correlations between the signal-of-interest
and signals in a different subspace. This property can be
particularly important for detecting the presence of weak
multi-path signals in array-processing problems. To see
this, let’s consider a simple array-processing example
where the data vectors (snapshots) are composed of two
correlated signals

y(k) = a1θ1(k)+ a2θ2(k)+ n(k). (10)

Here a1 and a2 are the unit-norm array-response vec-
tors for the signal-of-interest and a multi-path compo-
nent. The assumption is that the amplitudes θ1(k) and
θ2(k) are correlated. The effect of correlated multi-path
is to introduce mismatch into the array-response vectors.
This mismatch reduces the output-response of "matched"
detectors since the assumed array-response differs from
the actual array-response, which has changed because of
interference-pattern effects. In contrast the CAPE detec-
tor "removes" the signal-of-interest so any correlations
this signal may or may not have with any other signals has
no effect on the denominator in (8) and minimal effect
on the numerator.

4. COMPUTATION

In this section we examine methods for reducing the
computational-load in forming the CAPE statistic of (8).
The implicit assumption of this section is that the statistic
will be computed for a number of “look-directions/subspaces"
H. That is, the detector is “scanned" over a range of pos-
sible signals-of-interest. The first, somewhat obvious
point, is that the numerator of the statistic in (8) is inde-
pendent of H and needs only to be computed once regard-
less of how many “look-directions" are used. Secondly,
the overhead associated with the spectral-decomposition
in the denominator of (8) can be reduced in two ways.
Denote the singular-value-decomposition (SVD) of the
data matrix as

Y = [y1 y2 · · · yM ] = USV∗.

(Note this spectral decomposition is available from com-
puting the numerator term.) The denominator term can
be found from the singular-values of

(I− Ph)Y = (I− hh∗)USV∗ (11)

where we have assumed a rank-one signal subspace. The
results herein can be easily generalized to accommodate
higher-dimensional subspaces. At this point we also as-
sume that the spectral-decomposition of Y is not in com-
pact form, i.e. the matrix U is N × N and unitary and S
may have some zeros on the diagonal. The expression in
(11) can be written as

(I− Ph)Y = (I− hh∗)USV∗

= U(S− U∗hh∗US)V∗

4
= U(S− ww∗S)V∗ (12)

where we have defined the unit-norm vector w = U∗h.
Using the technique of Schreiber [4], define the magni-
tude and phase factors w = Dm where wi = mi e jφi ,
m = [m1 · · · m N ]

T is a length N unit-norm real-valued
vector, and D = diag{e jφ1 , · · · , e jφN }. We can now
write (12) as

(I− Ph)Y = U(S− ww∗S)V∗

= U(S− DmmTD∗S)V∗

= UD(S−mmTS)D∗V∗. (13)

This equation indicates that singular-values of the complex-
valued matrix (I−Ph)Y are equal to the singular-values
of the real-valued matrix S − mmT S. There are many
methods for efficiently computing the singular-values of
a diagonal plus rank-one outer-product or, equivalently,
the eigenvalues of the symmetric, diagonal plus rank-one
outer-product

(S−mmTS)T(S−mmTS) = S2 − SmmT S
4
= S2 − µµT (14)

where we have defined µ
4
= Sm.

Finally, we can exploit the fact that often the look-
directions are scanned in a manner such that adjacent
look-directions are "close" (perhaps in the sense of a
small principal angle although an exact definition of the
norm is not necessary). Consequently, the associated
spectral-decompositions are often close in some matrix
norm. Since spectral-decomposition is an iterative pro-
cess, the spectral-decomposition of the adjacent look-
direction can be used as an initial value in the new de-
composition — a procedure that can significantly reduce
the number of required iterations. Moreover, we are only
interested in the sum of the sub-dominant eigenvalues.
We can determine this quantity by taking the trace of
the matrix minus the sum of the dominant eigenvalues.
Consequently, it is only necessary to compute the domi-
nant eigenvalues. This is advantageous for two reasons.
First, because the dominant eigenvalues tend to converge



more quickly than the sub-dominant ones and second, the
size of the interference (dominant) subspace q is often
small in comparison to min(M, N ). An algorithm that
performs adequately, and the one used to compute the nu-
merical examples in this paper, is the orthogonal iteration
algorithm [5].

Computing CAPE with the orthogonal iteration algorithm

1. Compute the SVD of Y

Y = USV∗ = [Q0 Usd ]

[

Sd 0
0 Ssd

] [

V∗0
V∗sd

]

.

where Q0 ∈ C
N×q is the initial dominant sub-

space.

2. Compute the numerator of the statistic: n = tr(S2
sd).

3. For each look direction hi , i = 1, 2, · · · , B.

(a) Compute m = mag.(U∗hi ), µ = Sm.

(b) Initialize the dominant subspace using the
previous iteration’s estimate Qi = Qi−1.

(c) Perform an orthogonal iteration

i. A = (S2 − µµT)Qi

ii. QT = A (QR factorization)

iii. Qi ←− Q

(d) Repeat c) until the relative change in tr{T} is
less than ε.

(e) Compute the CAPE statistic

di = n/(tr(S2)− tr(T)) or

ci = ln(n)− ln(tr(S2)− tr(T)).

In the simulations of this paper, the algorithm typically
required only 2 iterations to converge (with ε = 10−4)
unless the new look-direction was in close proximity to
a source.

5. SIMULATIONS

In this section we assume that the data are obtained from
an N = 50 element, uniform linear array. The nominal
element spacing is 1 meter with an assumed wavefront
velocity of 1500 meters/second. The element positions
are perturbed by adding independent Gaussian random
variables to each of the elements’ three coordinates. De-
tection statistics are formed for 201 equally-spaced, in
cosine space, look-directions (beams). In the first sim-
ulation we have two closely-spaced (beams 20 and 30)
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Figure 1: Probability of Resolution Results

sources with array-output SNRs of 13 and 3 dB respec-
tively. A third, low-power source (output SNR of -4 dB),
is nominally on beam 80. All sources are narrowband
with a frequency of 20 percent of the array design fre-
quency. In Figure 1 we plot the probability of resolution
versus the standard deviation of the element perturbation
“noise". We consider the two sources on beams 20 and 30
resolved if the detector outputs on these beams are larger
than the minimum of the detector outputs on the interven-
ing beams 21-29. The CAPE detector has substantially
better resolution properties until the array mismatch is
so great that the probability of detection approaches the
value that would be obtained using white-noise instead
of the detector outputs to make the resolution decision.
M = 10 snapshots were used per trial, with the statistics
gathered over 1000 trials at each value of array mismatch.

In Figure 2, we plot an average peak-picked, detector
response versus bearing for this same experiment. For
each trial we compute the detector output for the given
number of beams. A point is considered a peak if the
detector output at this point is larger than that on the
two adjacent beams. All peaks are replaced with a value
of 1, while those outputs that are not peaks are set to
zero. Therefore for this example, an ideal peak-picked
plot would have ones at beams 20,30, and 80 and ze-
ros elsewhere. The peak-picked responses are averaged
over 1000 trials to obtain the figures. In this figure we
note that the CAPE and SSMUSIC algorithms are both
superior to the Capon algorithm and are roughly equiva-
lent in terms of "detection" performance on the closely-
spaced sources. This observation can be reconciled with
the probability of resolution curves by observing that the
SSMUSIC detector tends to place a peak on individual
sources with the same frequency as does CAPE. How-
ever, SSMUSIC does not simultaneously place peaks on
both sources as often as does CAPE.

The second experiment has the same parameters as
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Figure 3: Probability of Resolution Results: Beams 20
and 30 Correlated

the first experiment except that the sources on beams
20 and 30 are correlated with a correlation coefficient
ρ = 0.5e jπ/7. Again in this instance the CAPE detector
has better resolution and detection performance in com-
parison to the CAPON algorithm and similar results to
the SSMUSIC algorithm (which also has some multi-
path mitigation [3]).
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UNCLASSIFIED

UNCLASSIFIED

Matched Detector “Philosophy”

• Filter data to remove everything but the signal-of-
interest (SOI).

• Measure the “quantity” of what’s left.
– If we started with an unknown quantity, take ratio of 

the filter output to initial quantity (CFAR).
• The filtering is not perfect – some interference can 

leak through.  
– Training data can be used to adjust the filter to 

minimize this leakage.
– If training data contains the SOI, detector output 

suffers from suppression.
• Matched Detector Summary

– Characterize the “background” (training data).
– Do the test data “look like” SOI plus background or 

just background.
– Suffer from background mismatch and signal 

suppression.
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UNCLASSIFIED

UNCLASSIFIED

A slightly-different approach

• Remove the SOI.
• Take the ratio of what’s left over to what you 

started with.
• Interference can still cause misleading results

– In this case if the interference is in the null of the 
matched filter.

• Use the testing data to provide information about 
the interference.

• Summary
– Smaller interference mismatch than matched 

detectors
– Accommodates SOI in data.
– Is resistant to mismatch due to correlated signals 

(multi-path).
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UNCLASSIFIED

UNCLASSIFIED

Detector

• Through a series of monotonic transformations we 
arrive at the detector

• Here
– is the SOI.
– is the sample covariance matrix (testing data).
– is the rank of the dominant subspace of       .
– represents the       eigenvalue of      .
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